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A B S T R A C T

Tourism demand exhibits growth cycles, and it is important to forecast turning points in these
growth cycles to minimise risks to destination management. This study estimates logistic models
of Hong Kong tourism demand, which are then used to generate both short- and long-term
forecasts of tourism growth. The performance of the models is evaluated using the quadratic
probability score and hit rates. The results show that the ways in which this information is used
are crucial to the models’ predictive power. Further, we investigate whether combining prob-
ability forecasts can improve predictive accuracy, and find that combination approaches, espe-
cially nonlinear combination approaches, are sensitive to the quality of forecasts in the pool. In
addition, model screening can improve forecasting performance.

Introduction

Tourism has shown sustainable growth over the last few decades, leading to the development of multiple tourism-related in-
dustries. Accurate forecasts of tourism demand are crucial to decision making on tourism. In a recent review of the literature, Wu,
Song and Shen (2017) find that non-causal time series models, causal econometric models and artificial intelligence (AI) based
models are the most commonly used approaches to forecasting tourism demand in both research and practice. For example, Hassani,
Webster, Silva and Heravi (2015) develop a singular spectrum analysis framework, a non-causal time series model, for forecasting
tourist arrivals; and Yang, Pan and Song (2014), among others, use panel data to extend causal models identifying key determinants
of hotel demand. The rapid development of AI and machine learning has also had an impact on the tourism literature. For instance,
support vector regression (Cang, 2014; Chen and Wang, 2007), artificial neural networks (Claveria, Monte and Torra, 2015) and
fuzzy systems (Hadavandi, Ghanbari, Shahanaghi, and Abbasian-Naghneh, 2011) are now used to forecast tourist arrival. Although
the literature is rich in methodologies for forecasting tourism demand growth, few studies predict turning points using probability
forecasting. Yet the latter may be more useful than level forecasting, as emphasised in a review article by Witt and Witt (1995),
because tourism demand exhibits growth cycles over time. Butler (1980) categorises each cycle into six phases: exploration, in-
volvement, development, consolidation, stagnation and either decline or rejuvenation. The differences between these phases fun-
damentally alter the key factors determining business success and the effectiveness of government policies, forcing businesses and
governments to think and act very differently when developing investment strategies and establishing regulations. Therefore, ac-
curate forecasts of phases of tourism demand are as important as accurate forecasts of tourism demand itself.

Another reason why probability forecasting is as important as level forecasting is that forecasts come with uncertainty. Even if
forecasts are positive, tourism demand may turn out to be negative. Therefore, forecasting phases in terms of their probability has
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significant benefits for stakeholders. Such a probability not only indicates the chance of the occurrence of a particular scenario, but
also reflects the forecaster’s confidence in his/her estimates. Suppose that two analysts with equal prediction accuracy are asked to
assess the probability of tourism growth in the next period. The first analyst opines that tourism demand in the next period has a 90%
chance of being positive, whereas the second provides an estimate of 60%. Although both forecasts suggest that demand will be
positive, the first analyst is more confident and more informative than the second. Probability forecasts also play an essential role in
risk management. Investors and government officials can combine the probabilities assigned to different states with business
knowledge about the costs and benefits of each scenario to calculate the expected profits and take action accordingly.

Given the importance of tourism demand growth cycles and the useful information gained through probabilistic assessment of
each phase, more and more probability forecasts are being published and probability forecasting models being built for major
economic and financial indicators. For example, the Survey of Professional Forecasts in the US is a survey of macroeconomic forecasts
undertaken quarterly since 1968. The survey presents forecasters’ estimates of the probability that the growth of a particular variable
will fall into a certain range. The Monetary Authority of Singapore has also published quarterly probability forecasts of key mac-
roeconomic variables since 1999. Probability forecasts not only have a high practical value, but have been shown to be theoretically
important. In earlier studies, Witt and Witt (1989, 1991) forecast both directional change in tourism demand and its turning points by
origin, and evaluate the resulting forecasts by the percentage of correct predictions. However, they find that forecasting accuracy
varies considerably with origin and that none of the models outperform the no-change model, also called the naïve model, except in
two of the origin countries. These studies have spawned a series of efforts to build forecasting models for turning points, such as
Rossello-Nadal (2001) and Kulendran and Wong (2009), and research evaluating their performance, such as Witt, Song and Louvieris
(2003). In general, these researchers find that models using leading indicators generally outperform univariate time series models in
forecasting directional change or growth rate cycles. Kulendran and Wong (2011) make a first attempt to predict expansion and
contraction periods using logit and probit models, and evaluate the predictive power of various leading indicators using the quadratic
probability score (QPS), an analogue of mean squared forecasting error. They find that real income changes are the most important
factor determining turning points.

Although the QPS scores for most of the models used by Kulendran and Wong (2011) are less than 0.55, the threshold below which
a model can be said to have predictive power, as suggested by Chen (2009), the issues of real-time forecasting, long-horizon fore-
casting, instability in tourism demand growth and performance measurement have not been fully addressed. Therefore, in the fol-
lowing sections, we discuss the challenges involved in characterising phases in tourism demand growth, namely the information lag
problem and variance in states. As the states of a time series are not observable, they can be defined in many ways. For example, the
state at time t can be defined using two-sided averages. Therefore, the state at time t depends not only on past values, but also on
future values. To avoid the information lag problem, we focus on predicting directional changes in real time rather than trends based
on two-sided averages. In addition, the magnitude of the variance in states can have a huge impact on predictability. As we show
later, variance in states is a component of the QPS. The chosen definition of states must account for this.

Second, as investment plans or policies are usually implemented over several quarters, it is best to produce both short- and long-
term forecasts. We propose nine models that differ in their methods of information combination and in the leading indicators used,
and evaluate their predictive ability over both horizons. Third, during the period under study, tourism growth in Hong Kong fluc-
tuated considerably due to local and global crises and policy changes. To accommodate instability in the series, therefore, all of the
models are estimated in a rolling framework, allowing the parameters to adjust to the recent economic environment in a timely
manner. Fourth, although the QPS is widely used to measure the performance of probability forecasts, it can at best provide a coarse
summary of out-of-sample predictability. To understand why one model outperforms another, it is best to break the QPS into separate
components and examine them closely. Hence, in the evaluation section, QPS is decomposed into three components, namely cali-
bration, sharpness and uncertainty, as proposed by Murphy (1973). As these components represent three dimensions of performance,
they offer a more comprehensive understanding of why one model is better than another.

Forecast combination is a burgeoning field of tourism research. Chan, Witt, Lee and Song (2010) and Shen, Li and Song (2011)
consider several linear combination methods, and Cang (2011) examines a nonlinear combination approach. They find that combined
forecasts generally outperform the best individual forecast. However, the performance of combined probability forecasts has never
been studied in the tourism context. In practice, forecasters often hold different or even opposing views on future states. For example,
Moutinho and Witt (1995) report on a group discussion in which they invited a panel of tourism experts to give their opinions on the
probabilities of various possible directions for tourism development, such as the use of AI for tourism programme design, underwater
hotels and space travel, and to summarise their opinions to reach a consensus. However, from the perspective of forecast users, it is
difficult if not impossible to gather experts and derive a consensus from their opinions. In this study, we introduce several combi-
nation approaches to forecasting turning points in tourism growth, and thus offer practitioners a new means of summarising opinions.

The paper is structured as follows. In Section “Econometric methods”, we briefly discuss the procedures for estimating individual
probability forecasting models, describe the possible combination approaches associated with these models and define the perfor-
mance measurements. Section “Data and Empirical Results” describes the data used in the study and discusses the issues involved in
characterising different states of tourism growth rate. The estimation results and empirical analysis are also presented. Section
“Concluding Remarks” summarises our findings and provides recommendations for further research.

Econometric methods

First, we assume that yt is a binary variable defining two states of growth, such as expansion and contraction or positive and
negative growth. It takes a value of 1 when the tourism market is in the first state and 0 otherwise. Due to the latent nature of growth
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states, a wide variety of methods is used to characterise them. Issues concerning the definition of yt are covered in the next section.
We further suppose that each of M analysts is given a set of information ⋯x x{ , , }t K t1, , with which to predict +yt h, where h is the

forecasting horizon. As our data are given in quarterly frequencies, we consider a 1-quarter-ahead forecast for =h 1 and a 1-year-
ahead forecast for =h 4. The h-step-ahead forecasts generated by model m using observations up to time t are denoted by +pm t h, . The
analysts then build their own logit models based on certain functions of K predictors, and estimate them using a maximum likelihood
estimator. To accommodate the possibility of structural breaks in the time series, the model parameters βs are estimated in a rolling
framework with T0 observations in each rolling window. Therefore, the first T0 observations are used to estimate the parameters of
model m, = ⋯m M1, , and compute the h-step ahead forecasts ⋯+ +p p{ , , }T h M T h1, ,0 0 . Next, the same model using observations from 2 to

+T 10 is estimated to generate forecasts ⋯+ + + +p p{ , , }T h M T h1, 1 , 10 0 . This procedure continues until the last set of forecasts ⋯p p{ , , }T M T1, ,
has been generated.

Combined probability forecasts

Combining probability forecasts of states in tourism demand is more complicated than combining forecasts of tourism demand
growth, as the former process is restricted to the unit interval [0,1]. In this paper, we evaluate several combination approaches based
on either in-sample statistics or out-of-sample performance. Simple average (SA) combinations with relatively high success rates in
the literature are also considered. Given the nonlinear nature of the probabilities involved, we also consider a nonlinear approach
that takes a geometric average of all of the forecasts. To differentiate the combined models from the individual models, we denote the
combined forecasts ft. To obtain the training weights wm t, for the mth forecast, we further divide the timeline at =T T21 0 to generate
forecasts ft for = + ⋯t T T1, ,1 under a rolling scheme.

Linear opinion pool
The first combination method combines the forecasts linearly: = + ∑ =

f w w pt t m
M

m t m t0, 1 , , . As probabilities are often understood as
expert opinions, this method is commonly termed ‘linear opinion pooling’ (LiOP). Standard ordinary least squares can be used to
estimate the combination weights w t0, and wm t, . However, the forecasts ft are not guaranteed to fall inside the unit interval. Therefore,
we impose constraints on the weights, namely =w 0t0, and ≥w 0m t, for ∑ =

=
w 1i

M
i t1 , , and term the constrained method CLiOP. The SA

method that sets =w 0t0, and = −w Mm t,
1 for all m is its special case.

Model selection criterion
The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are conventional goodness-of-fit statistics for

measuring in-sample performance. If a model is stable, out-of-sample performance is expected to be consistent with in-sample
performance, so forecasts weighted by these statistics, denoted by wm t

AIC
, and wm t

BIC
, , respectively, should perform well. The weights are

given by

=
−

∑ −
=

w
AIC

AIC
exp( 0.5 )

exp( 0.5 )
m t
AIC m t

m
M

m t
,

,

1 ,

where AICm t, and BICm t, are the respective information criteria for the mth model. They are also special cases of LiOP.

Geometric average
The simple geometric mean (GM) method is the only nonlinear combination approach considered in this paper. It assigns equal

weight to each forecast and is defined as the M th root of the product of M forecasts, as follows:

∏=
=

f p( ) .t
GM

m

M
m t1 , M

1

Model screening

With a large sample, maximum likelihood estimation for the logit model is consistent. In practice, however, data are often limited.
Therefore, including too many predictors results in the inefficient use of information and thus poor forecasts. Assigning equal weight
to every model, as in the SA and GM methods, may increase sensitivity to the quality of the forecasting models in the pool. Recent
literature suggests that model screening should be conducted before combination. Yuan and Yang (2005) propose using a screening
procedure with the aid of the AIC and BIC to select a subset of M models, say ∗M , which is less than M , for combination. In the
following, we use the AIC derived from an initial regression to select the best =∗M 2 and the best =∗M 3 models. This allows us to
focus on comparing the performance statistics for the combined forecasts with those for the best model in the pool.

Benchmark models

The performance of the above methods is compared with two benchmarks. The first is the historical average (HA) method, which
takes the SA over the pastT0 observations. Its forecasts are simply equal to = ∑ = − + −

−f y T/t
HA

s t h T
t h

s1 00
. The second is the naïve model. As

the forecast generated for the next period is equal to = −f yt
Nai ve

t h
¨ , this model is also known as the no-change model.
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Performance evaluation

Traditional out-of-sample evaluation of the forecast ̂yt relies on the mean squared forecast error MSFE( ), defined as
̂= ∑ − −

= +
MSFE y y T T( ) /( )t T

T
t t1

2
11
. When ̂yt is a probability forecast, the QPS, as proposed by Brier (1950), is commonly used (see

Estrella and Mishkin, 1998; Chen, 2009; and Kulendran and Wong, 2011):
where ̂ = + ⋯y t T T, 1, ,t 1 are the out-of-sample forecasts generated by one of theM individual models, = ⋯p m M, 1,m t, , or the

combined probability forecasts, ft. It is similar to the MSFE but scaled up by a factor of 2. As yt is binary and ̂yt falls in the [0,1]
interval, the QPS lies between 0 and 2, with a score of 0 indicating perfect accuracy. To gain a deeper understanding of the quality of
the forecasts, Murphy (1973) decomposes the QPS into three components, as follows:

= + −QPS Uncertainty Calib Sharp.

As yt is a zero-one dummy variable, its variance is equal to −
− −
y y(1 ), where

−
y is the mean of yt . Uncertainty simply doubles the

variance of yt : = −
− −

Uncertainty y y2 (1 ). Therefore, when yt does not fluctuate, such that =
−
y 0 or 1, no uncertainty arises. However,

when yt is equally distributed between 0 and 1 such that =
−
y 0.5, uncertainty reaches its maximum level, equalling 0.5. As the

uncertainty depends on the observation values for yt only, it is the same for all of the forecasting models, and it thus cannot be used to
differentiate model performance.

In contrast, calibration and sharpness are both important quantifiers of model performance. The calibration, denoted byCalib, of a
probability forecast measures the reliability of a forecasting model. For example, when an event happens 70% of the time, a model of
the event is said to be reliable if its probability forecast is 0.7. Sharpness, abbreviated as Sharp, measures the extent to which forecasts
are followed by different realisations.

We use an example to explain how these quantifiers differ in terms of performance evaluation. Suppose that 100 probability
forecasts are denoted by = ⋯f t, 1, , 100t . Each of these forecasts corresponds to its actual observation = ⋯y t, 1, , 100t , with an
overall average value of

−
y . We assign ft and their respective yt to five equally sized bins in a histogram: (0, 0.2), (0.2, 0.4), (0.4, 0.6),

(0.6, 0.8) and (0.8, 1). If the first forecast f1 is equal to 0.9, f1 and its corresponding observation y1, whether zero or one, will be

assigned to the last bin. After assigning all ft and yt to each cell, we can calculate their average values, denoted by
−

Fb and
−

Yb, for each
bin = ⋯b 1, ,5.

Comparing
−

Fb with
−

Yb and
−

Yb with
−
y provides two ways of evaluating the models. The first comparison is captured by calibration

measuring the proximity of
−

Fb to
−

Yb. Suppose that 20 forecasts with values between 0 and 0.2 fall in the first bin. The average value
−

F1
must also fall in the same range, say 0.1. This number means that on average, the event only happens 10% of the time. Therefore, we
expect 2 of the 20 realisations yt in the first bin to take the value of 1 and 18 to take the value of 0 such that

−

Y1 also equals 0.1 if the

forecasting model is reliable. If
−

Fb is the same as
−

Yb for every bin, the calibration value is equal to 0, and the model is said to be
perfectly calibrated. In contrast, if =

−

F 0b and =
−

Y 1b , then the most unreliable model or the least well calibrated model has a
maximum calibration score of 2. Therefore, when comparing two models, a more reliable (better calibrated) model should have a
smaller calibration value.

Sharpness measures the variation in
−

Yb around
−
y . Its values range from 0 to 0.5, with a large value indicating a model with high

discriminatory power. Although both
−

Yb and
−
y involve observations of yt only, the forecasts generated by the model determine how to

allocate the realisations yt , which in turn determine the value of
−

Yb. Therefore, if a forecasting model contains discriminatory in-

formation on two states, the variation in
−

Yb is expected to be large. First, consider a model with zero sharpness. This happens when
forecasts cannot be used to distinguish between two states – observations yt attach randomly to forecasts, regardless of forecast size,

and forecasts randomly assign observations to bins. In this scenario,
−

Yb is approximately equal to
−
y for every bin. In contrast, a model

is said to be sharp if forecasts ft are able to differentiate =y 0t from =y 1t . Using the previously discussed example, the small
forecasting values in the first bin suggest that the ‘ =y 0t ’ state is most likely to arise. A sharp model assigns more =y 0t than =y 1t to

the first bin, such that
−

Y1 is different from
−
y . Similarly, more =y 1t are assigned to the last bin, in which the large forecasts are

located.
In sum, as the uncertainty is the same for all of the models, it cannot be used to evaluate the models’ predictive performance.

However, the definition of states can have a huge impact on the QPS, as it is predetermined by yt . In contrast, a probability forecasting
model with a low calibration value is reliable, and a model with a high sharpness score is able to differentiate between states, making
it much more informative than less sharp models. Therefore, our objectives are to determine appropriate definitions of states in
tourism demand growth and to find a model that is as sharp as possible, subject to calibration.

Data and empirical results

Data description

The quarterly data comprise the number of visitor arrivals to Hong Kong by region (visitori t, ), the real income (incomei t, ) of the
source markets and tourism price (Pi t, ) relative to that of Hong Kong for = ⋯i N1, , . The latter is defined as follows:

=P CPI EX
CPI EX

/
/

,i t
i i

HK HK
,
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where CPIi t, and CPIHK are the consumer price indices and EXi t, and EXHK are the exchange rates relative to USD of market i and
Hong Kong, respectively. The data on visitor arrivals from different source markets are obtained from the United Nations World
Tourism Organization. The data on consumer price index, real income and exchange rate are obtained from the International
Monetary Fund’s Statistics Yearbook of International Finance. The data cover the period 1995Q1-2017Q1, with 89 time points for
each series related to Hong Kong’s top =N 10 source markets: China, Taipei, Korea, the US, Japan, Macao, the Philippines,
Singapore, Thailand and Australia.

We then use log transformation to obtain the year-on-year growth rate of visitor arrivals (ai t, ), the growth rate of real income
(gdpi t, ) and the growth rate of price level relative to that in Hong Kong (pricei t, ), leaving =T 85 observations for the period from
1996Q1 to 2017Q1.

Individual forecasting models

As aHK t, , ai t, , gdpi t, and pricei t, at lags are common indicators of tourism demand, we also examine their ability to predict turning
points in tourism demand growth rates for =h 1, 4. We consider the following =M 9 models, which use the information set in
different ways.

= + −y F β β aM1: ( )t HK t h0 1 ,

∑ ∑= + +
= − = −( )y F β β gdp β priceM2: t i

N
i i t h i

N
i i t h0 1 1, , 1 2, ,

∑ ∑= + + +−
= − = −( )y F β β a β gdp β priceM3: t HK t h i

N
i i t h i

N
i i t h0 1 , 1 2, , 1 3, ,

= + +− −y F β β gc β pcM4: ( )t t h t h0 1 1 2 1

= + + +− − −y F β β a β gc β pcM5: ( )t HK t h t h t h0 1 , 2 1 3 1

= + +
−

−

−

−y F β β gdp β priceM6: ( )t t h t h0 1 2

= + + +−

−

−

−

−y F β β a β gdp β priceM7: ( )t HK t h t h t h0 1 , 2 3

∑ ∑= + +
=

− − =
− −( )y F β β δ gdp β δ priceM8: t i

N
i t h i t h i

N
i t h i t h0 1 1 , , 2 1 , ,

∑ ∑= + + +−
=

− − =
− −( )y F β β a β δ gdp β δ priceM9: t HK t h i

N
i t h i t h i

N
i t h i t h0 1 , 2 1 , , 3 1 , ,

M1 assumes that the lagged tourism demand growth rate of aHK already accurately reflects the economic conditions at time −t h,
so including other variables cannot increase predictability.

M2 and M3 are two information combination models: M2 includes all of the lagged predictors, gdpi and pricei, of the N cross-
sectional units in the model, and M3 further adds −aHK t h, to M2. As the number of observations is limited, the forecasts are con-
taminated by the error arising from estimating the parameters βs.

To address this issue, we consider three ways of reducing the dimensionality of the predictors. M4 uses the first principal
components of real gross domestic product growth (gc1) and relative price change (pc1) as the two leading indicators. M6 summarises

this information by taking SAs across the N cross-sectional units,
−

gdp and
−

price. M8 weights each of the N units by the proportion of
arrivals from the source destination i at time −t h, given by = ∑δ visitor visitor/i t i t j j t, , , . The models M5, M7 and M9 are their dynamic
counterparts, with −aHK t h, added to each. As logit and probit models yield similar results, our study reports the findings generated by
logit models, where F is the cumulative distribution function.

Definition of turning points

Various methods can be used to characterise a turning point, ranging from the Markov switching model proposed by Hamilton
(1989) to a rule-based method such as the algorithm proposed by Bry and Boschan (1971). The Markov switching model is usually
used to study the lifecycle of tourism demand (see Moore and Whitehall, 2005), but its consistency largely hinges on the validity of
the model specification for at. Alternatively, the rule-based method is often used in the forecasting literature because of its simplicity
and replicability. For example, Zellner, Hong and Min (1991), Gouveia and Rodrigues (2005) and Kulendran and Wong (2009, 2011)
identify the peaks (troughs) in tourism demand growth rate when it reaches a local maximum (minimum). That is, a downturn takes
place when at is largest in the nearest time domain − ⋯ +t W t W[ , , ], where W is an arbitrary positive integer, and vice versa. This
means that time t forms a peak when > ±a at t w for = ⋯w W1, , , and a trough when < ±a at t w. However, this method is not suitable
for monitoring turning points in real time, as it requires knowledge of future states, +at w, at time t . This creates an information lag
problem.

Another issue when considering the definition of states is the size of uncertainty. As uncertainty is a major component of the QPS,
a state characterisation with volatile movement in yt necessarily makes the indicators less predictive. For example, the rule-based
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method generates 14 turning points with =
−
y 47% of the observations falling in the expansion period. Its uncertainty is as high as

0.4982, which is close to the no-predictability threshold =∗QPS 0.55. Therefore, it is difficult to find sufficiently informative leading
indicators for highly volatile trends.

To avoid the real-time information lag problem and minimise uncertainty, we focus solely on directional change in tourism
demand growth, yt, as follows:

This characterisation is also adopted by Witt and Witt (1989, 1991), Witt et al. (2003) and Kulendran and Wong (2009). yt has 10
turning points, of which 84.7% are positive, yielding an uncertainty score of only 0.26, almost half that generated by Bry and
Boschan’s (1971) procedure. In addition, yt has a special relationship with at . Common predictors of at are likely also to predict yt . To
illustrate, suppose that = + + −− −a α α x α x εt t h t h t0 1 1, 2 2, , where −x t h1, and −x t h2, are the major determinants of at . For simplicity,

= + +− −z α α x α xt t h t h0 1 1, 2 2, . Equivalently, = −a z εt t t. When >a 0t , we have >z εt t . According to our definition of yt, the probability
forecast for a positive state =P y( 1)t is equal to >P a( 0)t . Therefore, we obtain the relationship = = >P y P z ε( 1) ( )t t t . The latter is
simply equal to the cumulative distribution for εt , or F z( )t . Due to the linkage = = = + +− −P y F z F α α x α x( 1) ( ) ( )t t t h t h0 1 1, 2 2, , the
leading indicators of at may also predict yt .

Fig. 1 plots the path of at (solid line) and highlights positive states in grey and negative states in white. Although the im-
plementation of the Individual Visitor Scheme had a huge positive impact on Hong Kong’s tourism market, the Asian financial crisis
in 1997, the SARS outbreak in 2003, the mortgage subprime crisis in around 2008 and the Chinese government’s tightening of the
‘one trip per week’ measure exerted strong downward pressure on local tourism.

Empirical results for individual models

A rolling window size of 30 quarters, i.e. =T 300 and =T 601 , is applied to the individual models and combined approaches,
leaving 25 quarters from 2011Q1 to 2017Q1 for the out-of-sample evaluation. We begin the analysis by presenting the in-sample
performance of the individual models M1 to M9. As HA forecasts can be obtained by =p F β( )t t0, , we determine whether the in-
dividual models outperform the HA method by testing at every time point whether all of the unknown parameters except the constant
term are jointly equal to 0. The likelihood ratio (LR) statistic is used to test the null hypothesis = ≠H β j: 0, 0j t0 , . For example, the
null hypothesis for M2 is = = = ⋯H β β i N: 0, 1, ,i t i t0 1, , 2, , . When the p-value is small, we reject the null and conclude that the model
outperforms the HA method.

The plots of the time-varying p-values for =h 1 in Fig. 2 and =h 4 in Fig. 3 reveal two issues. First, models M2 and M3, which do
not use information effectively, severely underperform regardless of the forecasting horizon, and M1, which depends on past tourism
growth, loses its predictability for =h 4. Second, the p-value paths are highly volatile, suggesting that the predictability of the models
changes over time and justifying the use of a rolling framework. These models, using summarised information such as the principal
components and weighted averages of the leading indicators, significantly outperform the HA method after 2011Q1 for =h 1 and
after 2010Q2 for =h 4.

Next, Table 1 presents the out-of-sample predictability of the individual models and the two benchmarks for =h 1, 4. From
2011Q1 to 2017Q1, uncertainty equals 0.32 regardless of forecasting horizon or model.

Fig. 1. Tourism demand growth rates.
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In line with their in-sample performance, models M2 and M3, which combine all of the information provided, have the poorest
forecasting performance over both horizons. Given a finite sample, incorporating all available information creates too much noise; a
huge estimation error in the parameters results in a QPS larger than the no-predictability threshold ( =∗QPS 0.55) for both models,
with the exception of M3 for =h 4. These high scores can be attributed to two factors. First, M2 and M3 are the most unreliable
models with the highest calibration values. Second, they are the least informative for =h 1, with close-to-zero sharpness scores
(0.0187 for M2 and 0.0251 for M3). While they are not the least sharp models for =h 4, their sharpness scores are still close to the
lowest boundary.

The models that summarise information are superior to M2 and M3. For =h 1, the dynamic models M5, M7 and M9 show an
obvious marginal gain over the corresponding static models without −aHK t, 1. All of the dynamic models except M5, whose perfor-
mance is the same as that of the naïve model, outperform the two benchmarks. This demonstrates that tourism demand retains a
strong momentum for at least 1 quarter. However, for =h 4, the marginal gain generated by −aHK t, 4 shrinks, as events that occurred 4
quarters ago are usually less informative than events that happened in the previous quarter. Therefore, the QPSs for =h 4 are
generally higher than those for =h 1. However, six models (M1, M4, M5, M6, M8 and M9) still outperform the benchmarks for =h 4.

Fig. 2. In-sample performance measured by p-values of LR statistics for =h 1.

Fig. 3. In-sample performance measured by p-values of LR statistics for =h 4.
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Another interesting insight gained from Table 1 is that the variation in QPS for =h 4 is much smaller than that for =h 1. The
dynamic term −aHK t, 4 loses its predictive power for long-term forecasting. Therefore, model predictability relies almost entirely on
whether the common predictors (income growth and relative price change) are used effectively. Short-term forecasting performance
relies more on the dynamic term −aHK t, 1. Adding more predictors is beneficial only when the benefits arising from the extra in-
formation outweigh the increase in estimation error arising from estimating the parameters. This partly explains why the QPS
difference between M1 (0.1288) and M3 (0.66) is so large.

The huge QPS improvement in the dynamic models for =h 1 can be attributed mainly to a substantial decrease in calibration and
increase in sharpness. The inclusion of a dynamic term reduces the calibration score by 43%, to 90%. The close-to-zero calibration
values, ranging from 0.008 to 0.027, suggest that the dynamic models (M5, M7 and M9) are more reliable than their static coun-
terparts. In addition, their sharpness values show a remarkable increase, rising from 62% to 357% relative to those of their static
analogues, reflecting the information hidden in previous tourism demand growth. Together, the high sharpness values and almost
perfect calibration scores suggest that these models not only predict states precisely but also generate bold forecasts that are close to
the boundaries. To visualise the usefulness of sharpness, we contrast the short-term forecasts generated by the naïve model (solid
line) with the HA forecasts (dashed line), and the three dynamic models M5, M7 and M9 (solid lines) with their static counterparts
(dashed lines) in Fig. 4. The forecasts generated by the former models are clearly much closer to the probability boundary 0 or 1,
especially for 2016, than those produced by the latter models.

Overall, we find that the leading indicators of tourism demand growth rate can also predict positive and negative states in Hong
Kong tourism demand. However, their predictive ability depends on how hidden information and the forecasting horizon are used. A

Table 1
Performance of individual models.

=h 1 =h 4

QPS Calib Sharp QPS Calib Sharp

M1 0.1288 0.0248 0.2160 0.2760 0.2002 0.2442

M2 0.9160 0.6147 0.0187 0.5960 0.3088 0.0328
M3 0.6600 0.3651 0.0251 0.4680 0.2013 0.0533

M4 0.2888 0.0801 0.1113 0.2952 0.0346 0.0594
M5 0.1480 0.0080 0.1800 0.2440 0.0459 0.1219

M6 0.3144 0.0477 0.0533 0.3208 0.0165 0.0157
M7 0.1032 0.0270 0.2438 0.3592 0.0425 0.0033

M8 0.2504 0.0523 0.1219 0.2824 0.0346 0.0722
M9 0.0968 0.0208 0.2440 0.2824 0.0468 0.0844

HA 0.3016 0.0159 0.0343 0.3400 0.0200 0
Naive 0.1480 0.0080 0.1800 0.4040 0.0888 0.0048

Note: uncertainty is 0.32 for all models.

Fig. 4. The out-of-sample one-step ahead forecasts.
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model’s predictive power can be improved only by including crucial information. If too much information is combined, the cali-
bration, sharpness and thus quality of a probability forecasting model is compromised. Our empirical studies show that M9 for =h 1
and M5 for =h 4, which summarise information, outperform the other models. Although forecasting far into the future is certainly
useful for practitioners, it is not as accurate as forecasting the next period. As many changes in the economic environment are
expected to occur over a year, for example, it is difficult for forecasters to make bold forecasts of events occurring a year later,
resulting in a loss of sharpness.

Empirical results for combined probability forecasts

We consider four linear approaches (SA, AIC, BIC and CLiOP) and one nonlinear approach (GM) to combining the nine forecasting
models. Table 2 shows their performance over short and long forecasting horizons. We find that regardless of the approach taken, the
performance of these combination methods is less promising than indicated in the literature on forecast combination for tourism
growth rate.

First, none of the four linear methods except CLiOP for =h 4 surpass the best individual model, although all four outperform the
worst model in the pool. The performance of the short-horizon combined forecasts deviates more from that of the best model than the
performance of the long-horizon combinations, which does not differ much. As mentioned earlier, the QPS varies more for =h 1
(from 0.0968 to 0.916) than for =h 4 (from 0.244 to 0.59). When the forecasts are combined, the worst model necessarily influences
the quality of the combined forecast. This problem is exacerbated by combining the individual models in a nonlinear way. The GM
approach, which assigns equal weight to every model, makes the combined forecasts highly unreliable and uninformative for future
states. Not only does it generate the highest calibration value, but the resulting model almost entirely lacks sharpness. Its QPS for

=h 1 is again larger than its QPS for =h 4.
Comparing the above mediocre results for the combination approaches with the success of traditional forecast combination

approaches in the tourism growth literature, we hypothesise that the performance of combined forecasts depends predominantly on
the quality of the forecasts in the pool, as the individual probability forecasts are now restricted to the [0,1] interval.

To test this hypothesis, we focus on a small-scale combination. We use the AIC1 derived from the initial set of regressions to select
the top ∗M models where =∗M 2, 3. The models with the lowest AIC (in ascending order) are M1, M7 and M5 for =h 1 and M1, M9
and M5 for =h 4.

Table 3 shows that the overall performance of these models is substantially better for both forecasting horizons, with the ex-
ception of a negligible increase in QPS for CLiOP for =h 4. Of all of the combination approaches, the GM model shows the greatest
improvement. Its QPS is reduced by around 90% for =h 1 and 65% for =h 4. In general, such improvement is more significant for

=h 1 than for =h 4, as the quality of the models with a short forecasting horizon varies more than that of the models with a long
forecasting horizon. This outcome corroborates our earlier argument that combined forecasts are sensitive to the quality of forecasts
in the pool. In particular, the AIC outperforms the best individual model for =h 1 and SA beats the best model for =h 4 when

=∗M 2. When =∗M 3, the BIC combination involving M1, M5 and M7 is as good as the best individual model (M9) for =h 1, and the
SA method retains its superiority over the other combination approaches for =h 4. This improvement derives mainly from the
increase in sharpness.

Overall, our results yield several insights. First, combined probability forecasts are highly sensitive to the quality of the models in
the pool. Therefore, it is vital to ensure high forecast quality to maximise the accuracy of a combined forecast. Sharpness generally
increases when the quality of the models in the pool improves. Second, although combining probability forecasts does not necessarily
improve their reliability, the calibration value of a combined forecast is generally very small.

Percentages of correct predictions

Lastly, in Tables 4–6, we report the hit rates, which are equal to the percentages of correct forecasts. A forecast is correct if the
probability of a positive state is higher than the 0.5 threshold and the associated actual state turns out to be positive, or if the
probability is lower than 0.5 and a negative state is realised. Our results show that the performance of the models as assessed by hit
rate is broadly in line with their performance as assessed by the QPS.

Specifically, for =h 1, the dynamic models with −aHK t, 1 outperform their static counterparts. The hit rates of the three dynamic
models (M5, M7 and M9) are between 92% and 96%, whereas their static counterparts (M4, M6 and M8) achieve hit rates between
only 80% and 84%. M9 is again the best model, with 4% more correct forecasts than the naïve model and 16% more than the HA
model. As discussed earlier, as the information content of −aHK t, 4 decreases, the dynamic models lose almost all of their marginal gain
in predictability relative to the corresponding static models. Hit rates are not improved by including lagged terms for the weighted
predictors (M7 and M9). The best model in terms of QPS (M5) remains the best model when hit rates are used for performance
measurement. It also shows a 4% gain relative to its static version.

The results in Table 5 are based on combined forecasts created by pooling all of the models without screening, whereas those in
Table 6 are based on forecasts using the top ∗M models. Comparing the results shown in these two tables for =h 1, we observe again
that model screening plays an important role in improving the percentages of correct predictions. Almost all of the combination
approaches, especially the geometric approach, show a substantial increase in hit rate when the top =∗M 2, 3 models are combined.

1 Assessment using the BIC yields the same results.
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Table 2
Performance of combined probability forecasts.

=h 1 =h 4

QPS Calib Sharp QPS Calib Sharp

SA 0.1608 0.0455 0.2047 0.2440 0.0418 0.1178
AIC 0.1480 0.032 0.2040 0.2632 0.0134 0.0702
BIC 0.1672 0.0512 0.2040 0.2632 0.0134 0.0702
CLiOP 0.1544 0.0184 0.1840 0.2376 0.0136 0.0960
GM 0.9928 0.6981 0.0253 0.8264 0.5440 0.0376

Table 3
Performance of combined probability forecasts using AIC model screening.

(a) =∗M 2

=h 1 =h 4

QPS Calib Sharp QPS Calib Sharp

SA 0.1096 0.0336 0.2440 0.2376 0.042 0.1244
AIC 0.0904 0.0144 0.2440 0.2568 0.0482 0.1114
BIC 0.0968 0.0968 0.3200 0.2568 0.0482 0.1114
CLiOP 0.1224 0.0584 0.2560 0.2696 0.1405 0.1909
GM 0.1032 0.0632 0.2800 0.2696 0.0351 0.0855

(b) =∗M 3

=h 1 =h 4

QPS Calib Sharp QPS Calib Sharp

SA 0.1288 0.0128 0.2040 0.2248 0.0283 0.1235
AIC 0.1032 0.0272 0.2440 0.2952 0.0596 0.0844
BIC 0.0968 0.0968 0.3200 0.2568 0.0482 0.1114
CLiOP 0.1224 0.0584 0.2560 0.2696 0.0856 0.1360
GM 0.1224 0.0584 0.2560 0.2568 0.0218 0.0850

Table 4
Hit rates for individual models with 0.5 as threshold.

=h 1 =h 4

M1 0.92 0.76
M2 0.44 0.64
M3 0.60 0.72
M4 0.80 0.80
M5 0.92 0.84
M6 0.80 0.80
M7 0.92 0.80
M8 0.84 0.84
M9 0.96 0.84

HA 0.80 0.80
Naive 0.92 0.76

Table 5
Hit rates for combined approaches with 0.5 as threshold.

=h 1 =h 4

SA 0.92 0.88
AIC 0.92 0.84
BIC 0.88 0.84
CLiOP 0.92 0.84
GM 0.36 0.48
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For =h 4, all of the linear combination methods perform better than the two benchmarks. Model screening does not necessarily
increase the number of correct predictions. However, this reflects the difficulty of predicting the occurrence of an event far from the
current time point, and hit rates provide at best a coarse performance measurement. They do not inform practitioners about the
properties of forecasts, and thus cannot provide reliable guidance for model selection.

Concluding remarks

This study emphasises the importance of forecasting different phases of tourism demand, which has high practical value for both
risk management and policy planning. We determine whether leading indicators of tourism demand can also predict states in the
growth rate of tourism demand in Hong Kong over both short and long forecasting horizons. The indicators are the rate of growth of
the number of visitor arrivals to Hong Kong; real income growth rate; and changes in relative real exchange rates in the top 10 source
markets. We evaluate nine logit models that differ in their use of information, summarising the indicators by SAs, principal com-
ponents or weighted averages. The models’ out-of-sample predictive ability is evaluated using not only the QPS but also its three
components, calibration, sharpness and uncertainty, helping analysts to characterise states in tourism demand and understand the
sources of improvements to predictive ability.

Our empirical findings using quarterly data from 1996Q1 to 2017Q1 can be summarised as follows. First, we find that two key
issues must be addressed when characterising states in tourism demand: real-time forecasting and uncertainty. Accordingly, we avoid
using a definition that requires two-sided information and select a characterisation with acceptable uncertainty. Therefore, we choose
to focus on directional changes in our analysis. Second, we find that putting all of the information into a single model does not
improve forecasting accuracy, but rather creates noise. Models containing too much information are not only poorly calibrated; they
also lack sharpness. Models that weigh information by either principal components or averaging across source markets have a much
lower QPS, lower calibration values and greater sharpness.

We further evaluate the performance of combined probability forecasts using either all of the models or the top ∗M models, and
find that they yield substantially different results. When all of the models are included, the QPS for the linear approaches is only
midway between that of the best and worst models, and the QPS for the nonlinear GM approach is even higher than that for the worst
model. The findings indicate a major challenge to probability forecast combination, namely the quality of forecasts in the pool. As
combination approaches are highly sensitive to forecast quality, we recommend applying the AIC to the initial set of observations to
select the top two or three models before combination. We find that model screening substantially reduces the QPS of all of the
combination approaches, especially the GM approach. The improvement in predictive ability is due mainly to a conspicuous increase
in sharpness. We also observe that the combination approaches weighted by in-sample statistics and the SA method surpass the best
individual model. Overall, the results show that combining probability forecasts can improve predictive power only when the quality
of the forecasts in the pool is high, suggesting that model screening should be conducted before combination.

The analytical framework outlined here is particularly relevant to tourism policy makers and business stakeholders. The logit
models will help practitioners to obtain warning signals in advance of turning points. The estimation results illustrate the importance
of conventional leading indicators, and show that how we use information is crucial to predictive power. Our evaluation process also
demonstrates that the components of the QPS can not only guide analysts in defining a state but also help them to gain a deeper
understanding of the differences in predictive power between models, whereas hit rates provide at best a coarse summary. Further, if
a high-quality spectrum of probability forecasts is available on the market, practitioners can obtain a useful consensus either by
combining forecasts using in-sample statistics or simply by averaging forecasts.

This study has some limitations. Although tourism demand growth occurs in more than two phases, we focus on two states only.

Table 6
Hit rates for combined approaches with 0.5 as threshold with model
screening.

(a) =∗M 2

=h 1 =h 4

SA 0.96 0.84
AIC 0.96 0.80
BIC 0.92 0.80
CLiOP 0.92 0.84
GM 0.92 0.84

(b) =∗M 3

=h 1 =h 4

SA 0.92 0.84
AIC 0.92 0.84
BIC 0.92 0.84
CLiOP 0.92 0.80
GM 0.92 0.88
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This simplifies not only the interpretation of tourism demand growth, but also the combination of probability forecasts. The study is
also limited by the small scope of combination approaches. As governments start to collect opinions on various economic indicators,
such as the health of the tourism industry, in terms of probability, further research evaluating a larger pool of linear and nonlinear
combined probability forecasts will be critical. Knowing how to select and how to combine probability forecasts will help to ensure
that effective investment and planning decisions are made.
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